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Abstract
Polymer rings in solution are either permanently entangled or are not.
Permanent topological restrictions give rise to additional entropic interactions
apart from the ones arising due to mere chain flexibility or excluded volume.
Conversely, entangled polymer rings systems may be formed by closing
randomly entangled flexible linear chains. The dependence of linking numbers
between randomly entangled rings on the chain length, more specifically the
second topological moment 〈n2〉, i.e. the average squared linking number, may
be determined. In this paper, an approach recently discussed in mathematical
physics and called Abelian BF theory, is presented which allows one to express
the linking constraint in its simplest form, the Gauss integral, in terms of two
gauge fields. The model of Brereton and Shah for a single ring entangled with
many other surrounding rings is rederived. The latter model is finally used to
calculate the second topological moment, in agreement with a recent result by
Ferrari, Kleinert, and Lazzizzera obtained using n-component φ4 theory for the
limit n → 0.

PACS numbers: 0240, 0520, 0540F, 1110, 1115

1. Introduction

The topology of knots and links has attracted the interest of mathematicians and physicists
alike (see for a general introduction e.g. [1–5, 7]). In polymer physics, the role of topological
constraints has been discussed since its beginnings [8, 9]. On the level of a self-avoiding
walk description for the polymer conformation, the Gauss invariant (defined below) was
discussed by Edwards who also considered the role of higher order link invariants (HOLC).
In [10], the Abelian Chern–Simons theory (however, not as per the present terminology
which is taken from the authors of [11]) was used to express the self-linking number of
a single ring. In his discussion of HOLC, Edwards pointed to the role of a three-vertex
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connecting three gauge fields, a remark anticipating the non-Abelian Chern–Simons theory
which was used by Witten [12] some 20 years later to obtain polynomial invariants for knots
and links. These algebraic invariants which are usually defined by mathematical knot theorists
in terms of recursion relations (skein relations) with respect to the crossings appearing in
the two-dimensional projections of knots and links have also been applied to polymers (for
this important approach which will not be explored here the reader is referred to [7]). The
conjecture by Edwards was validated, for example, by the work of Cotta-Ramusino, Guadagnini
et al [6] (see [2,7] and references therein) and by Axelrod et al [14] and Alvarez and Labastida
(see [15] and references therein), who showed that the Gauss invariant and all HOLC appear in
a perturbation series of the non-Abelian Chern–Simons theory when the vacuum expectation
value of products of Wilson loops is evaluated. This result suggests one should treat the Gauss
invariant as an approximate measure of true topology.

The concept of the Abelian variant of Chern–Simons field theory has been reconsidered
by many authors detailed in Refs [13,16–20], as well as for many rings systems, since it arises
naturally whenever the Gaussian linking number is enforced as a constraint in the partition
function. Partial reviews of the subject are found in Refs [4, 5, 7]. The non-Abelian variant
has been discussed only recently by some authors [4, 13, 17], however, its implementation in
terms of a well motivated physical model for entangled polymers is not so clear.

Whenever the Abelian Chern–Simons theory is used in the context of the Gauss integral,
an important problem arises in terms of self-linking integrals, where the double line integration
is not taken with respect to two different ring contours but with respect to a single ring contour.
These integrals attain a meaning only when using the so-called vertical framing, i.e. by replacing
the single ring by a band. For details of this and the relevant literature we refer the reader
to [2].

Following a suggestion of Thompson (see e.g. the review [22]), an alternative topological
quantum field theory, termed BF theory2, is used in the present paper. In contrast to the
Chern–Simons theory, it avoids the appearance of self-linking integrals, and was introduced,
at least to the knowledge of the author, to the subject of polymer topology in [17]. Recently,
BF theory was rediscovered in [20,21] which also dealt with avoiding self-linking integrals. In
agreement with the existing literature on topological quantum field theory as in [22], the term
BF theory will be used to underline the difference to the Chern–Simons theory as explained
above.

In the present paper, the direct link model for a system of np rings of [23] is used. It
singles out a single ring, say C1 and enforces a linking number n of this test ring with all
other rings Cβ ∈ {C2, . . . , Cnp } in the system. The Gauss invariant expressing the linking
number as a double line integral is then represented in terms of an Abelian BF theory. Next,
the conformational degrees of freedom of all rings but C1 are summed, giving rise to a ‘mass
term’ to be added to the BF theory. Then, one gauge field is integrated, and the field theory
of Brereton and Shah [23] is obtained, expressed in terms of the one remaining gauge field
and the conformational field r1(s), where s parametrizes the polymer contour. This theory
is then used to evaluate what has recently been called the second topological moment [20],
〈n2〉. Essentially, the purpose of this paper is two-fold: one, to inform polymer physicists of a
new approach (BF theory) for tackling entangled polymers, and two, to present a very simple
derivation of the second topological moment in dense systems.

The outline of the paper is as follows. In section 2, the direct link model is presented and
expressed as an Abelian BF theory. The model of Brereton and Shah is derived. In section 3,

2 The term ‘BF’ originates from its non-Abelian form whose general action is given by the (wedge) product of a field
B and field tensor FA (corresponding to another field A), S = ∫

Tr(B ∧ FA). In the Abelian case, FA = dA.
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the second topological moment is evaluated. Finally, in the concluding section any relation to
similar work is discussed and a simple scaling argument is evoked to interpret the results.

2. The direct link model as a BF theory

Let the conformation of the single test ring and all other rings be given by their coordinates
{r1(s)} and {rβ(s)} where β = 2, . . . , np, respectively. Now let n be the linking number of
the ring C1 with all other rings Cβ

n =
np∑
β 	=1

�(C1, Cβ) (1)

where

�(Cα,Cβ) = 1

4π

∮
Cα

∮
Cβ

drα ∧ drβ · rα − rβ

|rα − rβ |3 (2)

is the Gaussian linking number. As discussed in the literature [1,2], the double line integral on
the rhs is a topological invariant, i.e. is invariant with respect to all deformations of the rings
given by their coordinates {rα} and {rβ} which do not alter the topological state. However, this
invariant is not unique. A counterexample is the Whitehead link [1] which represents a linked
state between two rings and has the linking number �(Cα,Cβ) = 0, the same value which
results for a pair of unlinked rings. However, the Whitehead link is maintained by the self-
interaction of one ring with itself. For random walk rings, these self-interactions effectively
disappear, and thus the Whitehead link is unknotted to a pair of unlinked rings.

The partition function of the system with a given linking number n reads as

Z(n) = Z0

〈
δ

(
n,

np∑
β 	=1

�(C1, Cβ)

)〉
{r1(s)},{rβ (s)}

. (3)

The Kronecker delta appearing in equation (3) may be expressed in terms of the integral

δ(n, f ) =
∫ π

−π

dg

2π
eign−igf (4)

giving rise to a topological ‘charge’ g conjugate to n. One obtains the corresponding conjugate
partition function Z(g)

Z(g) =
〈

exp

(
ig

np∑
β 	=1

�(C1, Cβ)

)〉
{r1(s)},{rβ (s)}

. (5)

The parameter g may therefore be considered to be the chemical potential for the linking
numbers. In what follows, the conformational model for the rings is restricted to closed
random walk chains. The excluded volume effect is neglected. As discussed in [17], this
simplification restores the uniqueness of the Gauss invariant for the links.

The exponential function in equation (5) may now be expressed (in the spirit of a Hubbard–
Stratonovich transformation) in terms of an Abelian BF theory as follows [22]:

Z(g) = N
∫

DA

∫
DB exp

(
i
∫

B ∧ dA

)

×
〈

exp

(
ig
∮
C1

dr1 · A

)〉
{r1(s)}

〈
exp

(
i
∫

B · j

)〉
{rβ (s)}

. (6)

The constant N is a normalization. The wedge product ∧ is an exterior product which generates
the algebra of differential forms over R

3,�∗(R3) [24]. In this language A and B are one-forms,
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and the invariant expression B ∧ dA is a three-form. In terms of local coordinates it reads
as ελµνBλ∂µAν dx1 ∧ dx2 ∧ dx3. Therefore, no volume element appears in the integration.
Line integrations are specified explicitly. The notation given above has been widely used in
field theory literature [22], and is used here to make manifest the coordinate invariance of the
field theory. Later on, when evaluating two-point functions, we return to explicit coordinate
representations of the fields. The variable j(x) is the tangent vector density, simply called the
‘current’, of the chains β = 2 . . . np

j(x) =
∑
β

∮ N

0
ds ṙβ(s)δ(x − rβ(s)). (7)

The conformational averages with respect to the test ring C1 and with respect to the
other rings factorizes for random walk chains. The conformation of the surrounding rings are
represented in terms of the current j. In fact, they have fused to a single effective ring. As a
reminder, the appearance of self-linking numbers has been avoided.

Next, the conformational coordinates for the surrounding rings C1 for β 	= 1 are summed.
Then, the functional integral with respect to the gauge field B is performed. First, the average
with respect to the ring chains Cβ is found. For random walk rings one obtains〈

exp

(
i
∫

B · j

)〉
{rβ (s)}

= exp

(
− 1

2

∫
dx

∫
dx′ Bµ(x)Bν(x

′)〈jµ(x)jν(x′)〉
)
. (8)

On the rhs of this equation the chain index has been omitted. The average of the correlation
function for the currents at points x and x′ is carried out in the limit of very long rings. Let us
denote the number of segments per ring by N and the average segment length by l. Neglecting
1/N terms arising due to the closure constraint [28] for the surrounding rings, the current–
current correlation function is given by the following expression (the same approximation is
made in [23])

〈jµ(x)jν(x′)〉 = δµν
ρl2

d
δ(x − x′) (9)

where ρ = (npN)/V is the average segment density. Equation (9) is an approximation valid
for sufficiently concentrated systems. The question may be raised for these systems whether
the Gauss invariant is still valid. Certainly the probability for more complicated links, such
as the Borromean rings (a three-ring link which falls apart when cutting one ring), which are
only detected by HOLC, is higher but remains low compared to the Gauss invariant measuring
the pairwise entanglement of rings. In order to determine the second topological moment
given in the next section, these considerations are irrelevant as the Gauss invariant is simply
an observable of the system (see below).

Let G = ρl2/3 and then the partition function reads as

Z(g) = N
∫

DA

∫
DB exp

(
i
∫

B ∧ dA − G

2

∫
B · B

)〈
exp

(
ig
∮
C1

dr1 · A

)〉
{r1(s)}

(10)

where N is an adjusted normalization factor. Now integration with respect to the gauge fields
B may be carried out, and this yields the effective model of Brereton and Shah [23]

Z(g) = N
∫

DA exp

(
− 1

2G

∫
(∇ ∧ A)2

)〈
exp

(
ig
∮
C1

dr1 · A

)〉
{r1(s)}

. (11)

Leaving aside for the moment the average with respect to the C1 ring and using the language of
quantum field theory, one is left with a so-called Wilson loop that is averaged with respect to
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a Euclidean Yang–Mills theory in 2 + 1 dimensions. Wilson loops are considered in quantum
field theory for studying the confinement problem. An analogy to this problem has been used
in [25] to study the collapse transition of randomly entangled polymer rings in two-dimensions
(for earlier studies see [26, 27]).

3. The second topological moment

The second topological moment 〈n2〉 for a single test ring entangled with many other rings
given the restriction that all conformational averages are taken with respect to random walks
may now be determined rather simply. Following [20, 21] 〈n2〉 may be determined from

〈n2〉 = − ∂2

∂g2
Z(g)|g=0. (12)

More generally Z(g) is the generating function for all topological moments. It is formulated
for the present purpose as follows:

Z(g) =
〈

exp

(
ig
∮
Cα

drαA

)〉
{A},{rα(s)}

. (13)

The normalization factor has been absorbed into the average with respect to A. To separate the
gauge fields and the conformational coordinates, the line integral in equation (13) is expressed
as follows: ∮

C

dr · A =
∫

k

Aµ(k)

∮
C

ds ṙµ(s)e
ik·r(s). (14)

The summation convention is understood. The abbreviation
∫

k
represents

∫
d3k/(2π)3. In

order to perform the functional integral with respect to A, a gauge has to be used, which in
the present case is ∇ · A = 0. In this case the two-point correlation function for A in Fourier
space is given by

〈Aµ(k)Aν(q)〉{A} = δ(k + q)
G

k2
(δµν − k̂µk̂ν) (15)

where k̂µ = kµ/|k| are the components of a unit vector. In order to perform the conformational
average, the only expression needed is

�µν(s1, s2; k) = 〈ṙµ(s1)ṙµ(s2)e
ik·(r(s1)−r(s2))〉. (16)

This average has been evaluated for random walk rings [28] and reads as follows:

�µν(s1, s2; k) =
[
l2

3
δµν

(
δ(s1 − s2) − 1

N

)
+

l4

9N
kµkν |s1 − s2|

(
1 − |s1 − s2|

N

)]

× exp

[
− l2k2

6
|s1 − s2|

(
1 − |s1 − s2|

N

)]
. (17)

The k-dependent terms in the first factor on the rhs of this equation do not give any contributions
due to gauge invariance. This is most obvious in the Landau gauge, k · A(k) = 0.

Now, the second topological moment is given by (using a summation convention for
repeated indices)

〈n2〉 = −
〈 ∫

k

∫
q

Aµ(k)Aν(q)

∮
ds1

∮
ds2 ṙµ(s1)ṙν(s2)e

ik·r(s1)eiq·r(s2)

〉
{A},{r(s)}

. (18)
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Using the correlators (15) and (17), one obtains the expression

〈n2〉 = G

∫
k

1

k2

∮
ds1

∮
ds2

[
l2

3
(δµµ − 1)

(
δ(s1 − s2) − 1

N

)]

× exp

[
− l2k2

6
|s1 − s2|

(
1 − |s1 − s2|

N

)]
. (19)

The last equation gives rise to two terms. The first stems from the delta function δ(s1 − s2) and
is readily evaluated. The second needs further analysis: if s1 = s2, the exponential equals 1,
and one needs to evaluate an integral in k space which depends on a cutoff % ∼ ξ−1; if
s1 	= s2, the integration with respect to s1, s2 gives a non-trivial contribution to the integration
in k-space, the details of which are discussed in the appendix. When inserting for G the result
is

〈n2〉 = ρl3

(
Nl%

9π2
−

√
N√

2(3π)3
− l%

9π2

)
(20)

where % = ξ−1 is an inverse cutoff length. As the result has been obtained in the limit N � 1,
the last term which is independent of N may be dropped, so the final result in the large N limit
reads as

〈n2〉 � ρl3

(
Nlξ−1

6π2
−

√
N√

3(2π)3

)
. (21)

Apart from the numerical prefactors, the result is identical to the one derived from an n-
component field theory for the limit n → 0 in [20]. The leading scaling term in equation (21)
was also found by Brereton and Shah [29] who calculated the generating functionZ(g) directly
in the conformational space without the use of gauge fields, using a pre-averaging procedure
as a further approximation. Their result contains, however, the square root of the ratio l/ξ in
contrast to the present result which is a minor difference and might be due to the approximation
used in their work.

4. Discussion

The topological constraint of the fixed linking number of a test ring entangled withnp surround-
ing rings has been implemented within the framework of a random walk model for polymer
conformation using the simplest link invariant, the Gauss integral. This was reformulated in
terms of a topological quantum field theory: the so-called Abelian BF theory. Two results were
obtained: first, the model of Brereton and Shah [23] was derived, second, the second topo-
logical moment for the limit of large segment numbers N � 1 was calculated, in agreement
with the previous result by Ferrari et al [20, 21]. The same result may also be obtained from
directly averaging the squared Gauss integral with respect to a random walk conformation, a
work which will be presented elsewhere. The gauge field approach, however, is conceptually
very appealing as it separates the topological interactions from conformational entropy.

The present method avoids the complicated n-component field theory used in [20]. The
latter approach is, however, better suited for treating the complete problem including excluded
volume interactions. On the other hand, the Gauss invariant is ambiguous for self-avoiding
walk rings. After considering work by Moroz and Kamien [31] the problem remains whether
a topological field coupled to the n-component field for the polymer conformation changes
the random walk result significantly. The authors have considered self-avoiding walks with
writhe. In fact, a chemical potential for writhe is introduced which gives the coupling constant
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for the interaction between a topological gauge field and a conformational n-component field,
in a very similar way to that in [20]. The scaling behaviour of the radius of gyration and the first
two moments of writhe are calculated. As to the first question, the effect of writhe is found to
be irrelevant (to one-loop), i.e. the self-avoiding walk fix point corresponding to the exponent
ν � 0.588 remains unchanged. Essentially this result is due to the fact that a topological field
theory lacks a scale. With respect to the moments of the writhe (which is similar to calculating
moments of n as done above), no scaling dependence on the number of polymer segments is
found which is a surprising result. A clarification of this issue is certainly necessary. Let us
note that Kholodenko and Vilgis [32] calculated the writhe of semiflexible polymers which
was found to scale as N1/2.

Finally let us interpret the results of equation (21) in simple terms. Obvious the second
topological moment basically scales as 〈n2〉 ∼ ρl3N as N becomes large. A simple argument,
also discussed in [30], gives a similar result. Let the average segment density ρ inside the test
ring be given by the number of rings crossing the interior of the test ring, which is equal to the
average linking number per ring n̄, times the number of segments N , divided by the volume
of the test ring R3. Then the density reads as

ρ = n̄N

R3
. (22)

Assuming that the segment density in the interior of the test ring is equal to the segment density
elsewhere in the system, and employing R3 ∼ l3N3/2, i.e. using the Gaussian result for the
ring volume, one immediately obtains

n̄ = ρl3
√
N. (23)

Both n̄ and
√

〈n2〉 scale as
√
N , so the theoretical calculation presented above reproduces the

characteristic scaling with the chain length derived from this simple argument. The difference
between the density-dependent prefactors appears to be superficial. In fact in the case of dense
melts where ρ ∼ l−3 and which is the regime where the above argument applies, the prefactors
coincide and n̄ =

√
〈n2〉.
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Appendix

Here the details of the calculation of the rhs of equation (19)

〈n2〉 = 2

3
G

∫
k

1

k2

∮
ds1

∮
ds2

[
l2
(
δ(s1 − s2) − 1

N

)]

× exp

[
− l2k2

6
|s1 − s2|

(
1 − |s1 − s2|

N

)]
(24)

is given in more detail. The delta function in the integrand gives rise to the integral

I1 = 2

3
GNl2

∫
k

1

k2
= 2

3
GNl2

4π

(2π)3

∫ %

0
dk

= GNl2
%

3π2
(25)



2546 M Otto

where the k integration has been carried out up to the cutoff parameter % ∼ ξ−1. The 1/N
term in the integrand on the rhs of equation (24) is given by

I2 = −2

3
G
l2

N

∫
k

1

k2

∮
ds1

∮
ds2 exp

[
− l2k2

6
|s1 − s2|

(
1 − |s1 − s2|

N

)]
. (26)

Concerning the integration with respect to s1 and s2 in the last equation, two cases need to be
considered: s1 = s2 and s1 	= s2. In the first case, the exponential function gives 1 and the
integration gives a factor of N , the result being

I2a = −Gl2
%

3π2
. (27)

The case s1 	= s2 is slightly more involved. First, let us integrate with respect to k, which gives

I2b = −G
l2

N

4π

(2π)3

∮
ds1

∮
ds2

√
2π

[
l2

3
|s1 − s2|

(
1 − |s1 − s2|

N

)]−1/2

. (28)

Now the domain of integration with respect to s1 and s2 may be restricted to two times one
half that of the original one giving

I2b = −2

3
G
l2

N

4π

(2π)3
2
∫ N

0
ds1

∫ s1

0
ds2

√
2π

[
l2

3
(s1 − s2)

(
1 − (s1 − s2)

N

)]−1/2

. (29)

A shift of variables u = (s1 − s2)/N , v = (s1 + s2)/N is easily performed and leads to

I2b = −2

3
G
l2

N

4π

(2π)3

√
2πN2

∫ 1

0
du
∫ 2−a

a

dv

[
l2

3
Nu (1 − u)

]−1/2

. (30)

From now on the integration is elementary and one obtains

I2b = −GlN1/2 1√
6π3

. (31)

Adding I1, I2a , and I2b and inserting G = ρl3/d for d = 3 gives the rhs of equation (19) in
the main text.
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